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Abstract To be identified as a wetland under U.S. Federal
regulations, a site must, under normal circumstances, support
vegetation dominated by hydrophytes. A list of hydrophytes
and their wetland indicator rating is published by the U.S.
Army Corps of Engineers as the National Wetland Plant List
(NWPL) and is the basis for assessing the vegetation criteria
of Federal wetland delineation manuals. Ratings are primarily
based on expert opinion and few empirical studies have been
done, particularly at landscape scales. In this study, we devel-
oped an approach for quantifying plant indicator ratings at
broad spatial scales and used it to estimate the frequency that
Picea pungens Engelm. (Colorado blue spruce) occurs in wet-
lands across a 22,921 km? study area in the southern Rocky
Mountains. Species distribution models were developed and
used to inform a multistage field sampling design. Wetland
soil and hydrology indicators were assessed around 423 ran-
domly selected trees in 22 HUC12 watersheds. Only 16.5 %
of trees occurred in wetlands, suggesting that a rating of fac-
ultative upland (FACU) is more appropriate than the currently
published rating of facultative (FAC) for our study area. This
study demonstrates that it is feasible to quantitatively evaluate
ratings for species even at broad landscape scales.
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Introduction

The identification and delineation of wetlands in the U.S.
using U.S. Army Corps of Engineers (USACE) methods relies
on the concept of wetland indicators — characteristics of soil,
vegetation, and hydrologic regime that indicate the occurrence
of wetland conditions (Tiner 1999; Environmental Laboratory
1987). To be classified as a wetland according to the USACE
wetland delineation manual, a site must support hydric soils
and a wetland hydrologic regime. In addition, under normal
circumstances a site must also support vegetation dominated
by hydrophytes, defined as “any macrophyte that grows in
water or on a substrate that is at least periodically deficient
in oxygen as a result of excessive water content; plants typi-
cally found in wet habitats” (Environmental Laboratory 1987;
Tiner 2012). Lists of hydrophytes were originally developed
by National Wetland Inventory staff, panels of regional ex-
perts, and agency personnel and were published as the
National List of Plant Species that Occur in Wetlands (Reed
1988; Tiner 2006). These lists are now administered by the
USACE and updated as the National Wetland Plant List
(NWPL; http://rsgisias.crrel.usace.army.mil/NWPL/)
(Lichvar et al. 2014; Lichvar 2013).

Indicator ratings on the NWPL are a probabilistic assess-
ment of the frequency that individuals of a species occur in
wetlands and are assigned separately within each of the 10
USACE regions of the U.S. in which each species occurs.
One of five indicator classes is assigned: obligate wetland
species (OBL) almost always occur in wetlands (estimated
probability >99 %), facultative wetland (FACW) species usu-
ally occur in wetlands (67-99 % probability), facultative
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(FAC) species are equally likely to occur in wetlands or non-
wetlands (34-66 %), facultative upland (FACU) species usu-
ally occur in non-wetlands (1-33 %) and obligate upland
(UPL) species rarely occur in wetlands (<1 %) (Lichvar and
Minkin 2008). Additions and revisions to the NWPL ratings
are made by technical committees from each of the Corps
wetland regions and are a collaborative effort with participa-
tion by four Federal agencies: Corps of Engineers,
Environmental Protection Agency, Fish and Wildlife
Service, and Natural Resources Conservation Service. The
opinions of experts in botany and plant ecology are also
solicited from government agencies, universities, and the pri-
vate sector.

The indicator rating of each taxon is a non-quantitative
assessment made by panel members using their experience,
as well as floristic manuals, regional experts, and pertinent
ecological literature, when it exists. However, most species
ratings are untested hypotheses, and methods for analyzing
the wetland indicator rating of a species have not been previ-
ously developed. Despite their importance to the outcome of
wetland delineations, to our knowledge, the indicator rating of
a species on the NWPL has never been explicitly and rigor-
ously tested at a landscape or ecoregional scale. Such methods
are essential for improving the rigor and overall accuracy of
the NWPL.

Our objectives in this study were to (1) develop a general
framework for quantifying the frequency that a plant occurs in
wetlands (sensu the USACE definition) at landscape scales,
and (2) use this framework to estimate the wetland indicator
rating of Picea pungens Engelm. (Colorado blue spruce)
across a large land areca. We selected P. pungens as a test
species because of its broad range, patchy local distribution,
and the relatively low confidence in the existing rating that has
been reported by wetland scientists. In addition, because of
P. pungens often high contribution to local vegetation cover
and current NWPL rating of FAC, it can be consequential to
the outcome of wetland delineations and determinations using
USACE methods. However, the main goal of our paper is to
develop a general framework that, with appropriate species-
specific modifications, can be used to quantify the indicator
rating of any species on the NWPL.

Methods
Study Species and Study Area

Picea pungens is a large conifer tree discontinuously distrib-
uted in mountain regions of Arizona, New Mexico, Idaho,
Utah, Colorado, and Wyoming (Little 1971). The current
NWPL wetland indicator rating for the species is facultative
(FAC) (Lichvar 2013), making it a hydrophyte for the wetland
vegetation criterion in the USACE manual (Environmental
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Laboratory 1987). It can locally dominate mid-elevation
mountain stream valleys throughout its range and its indicator
rating can in part determine whether a site has hydrophytic
vegetation for USACE wetland identification purposes.
Regional floras and plant guides describe this species as oc-
curring in streamside habitats (Weber and Wittmann 2012;
Nelson and Williams 1992), but the species is also known to
occur outside of riparian corridors as part of mixed conifer
forests (Taylor 1993). Hybridization between P. pungens and
P engelmannii, a dominant of subalpine forests throughout
the Rocky Mountains, may occur where the species’ ranges
overlap (Taylor 1993; Schaefer and Hanover 1985; Mitton
and Andalora 1981).

Our study area was located in north-central Colorado and
southern Wyoming, USA and encompassed 259 12th level
Hydrologic Unit Basins (HUBs) occurring in the Northern
Parks and Ranges Section of the Bailey ecoregion classifica-
tion (Bailey 1980) and covering a total 0f 22,921 km? (Fig. 1).
A distinguishing characteristic of our study area is a distinct
north to south climate gradient, with southern HUBs having a
more pronounced late-summer monsoon precipitation regime
(Gutzler 2004; Higgins et al. 1997). This is reflected in differ-
ences in forest composition and structure from north to south
in the region (Peet 2000) and has been found to influence the
functioning of groundwater-dependent wetlands (Cooper
1990).

Species Distribution Modeling

Steep topography and low road density make sampling across
mountain landscapes logistically challenging. In addition, the
broad but patchy distribution of P. pungens across its range
and the lack of detailed distribution maps pose additional
challenges for developing effective sampling designs.
Existing range maps by Little (1971) are at a scale too coarse
(1:1,000,000) to efficiently direct a sampling program.
Anecdotal accounts of P. pungens’ distribution are found in
regional floras (Weber and Wittmann 2012; Nelson and
Williams 1992; Dorn 2001), but geospatial data at a suitable
spatial scale are unavailable.

To develop a more targeted basis for sampling, we devel-
oped and compared several species distribution models
(SDMs) and incorporated the best performing model into
our sampling design. SDMs have been widely used to analyze
rare species, model invasive plants, and predict responses to
climate change and many well-tested algorithms have been
developed (Wiens et al. 2009; Sousa-Silva et al. 2014;
Gibson et al. 2014; Phillips et al. 2004; Elith and Leathwick
2009; Franklin 2010). Unlike these studies, our main motiva-
tion for SDM development was to help define a more efficient
sampling frame.

We used occurrence records for P. pungens obtained from
herbarium collections and vegetation plot data (n=401) as



Wetlands (2016) 36:111-120

113

A

WYOMING

COLORADO

T "i}:‘j‘ =
SN 5
PR S

;,) Roeky'Mouftain r\ﬁ?
:'\‘-\ ey,

N

: ,.MI-&

g

|| Sludy area boundary

] stage 1 sampiea
Stage 1 Sample Frame
National Parks

National Forests

: - "'| 3150
0 03 06Km 3 C
RO 45 0 147216
(@]
194136 16 90
o~ 49
Ol stg2rarid 2900 ~
@ -7 .
O Q@ 7s-180 —
Q 161-267 | Pson C‘,; ) S
cont100m TS w e

T T T 1 T T 71T
0 40 80 160 Km

Fig. 1 Southern Rocky Mountain region study area (panel A, inset) illustrating assessment area boundary, 12th level HUBs, and selected first stage
watersheds. Example of a 12th level HUB (panel B), and a close-up of selected stage 2 points (panel C)

inputs to derive SDMs, and used a range of environmental
layers processed in ArcGIS (v. 10.2, ESRI, Inc.) including
30 m National Elevation Dataset (NED) elevations, NED-
derived slope, and two NED-derived Topographic Position
Index (TPI) layers as explanatory variables (see electronic
supplement for more details on variables and data sources).
TPI compares the elevation of raster cells to the mean elevation
of a neighborhood specified around that cell (De Reu et al.
2013; Jenness et al. 2013; Weiss 2001), set in our analysis as
150 m and 600 m (5 and 20 cells, respectively). High positive
TPI values represent areas that are higher than the mean of their
surroundings, negative values represent locations in valleys,
and TPI values near zero represent either flat areas or arcas
of constant slope (De Reu et al. 2013). Other explanatory var-
iables used in SDM generation included modeled PRISM pre-
cipitation data (Daly et al. 2008; PRISM Climate Group 2014),
and a distance to stream layer derived from stream centerlines
in the National Hydrography Dataset (NHD).

Species distribution models were developed and evaluated
using the Software for Assisted Habitat Modeling (SAHM)
built on the VisTrails modeling platform (Morisette et al.
2013). SAHM allows users to simultaneously compare multi-
ple SDMs generated from different algorithms, create contin-
uous species prediction surfaces and binary presence/absence
maps, and provides visualization and workflow management

tools to assist in SDM development (Talbert and Talbert
2012). Processing modules in SAHM run algorithms in exter-
nal programs (R, MaxEnt) for model creation and the produc-
tion of diagnostic plots and statistics for evaluating model
performance (Morisette et al. 2013; Talbert and Talbert 2012).

Five SDMs were developed using P. pungens occurrence
data and explanatory variables. For model runs, 10,000
pseudo-random points were randomly generated across the
modeling domain. Generalized linear models (GLM) were
run using a bidirectional stepwise procedure and Akaike’s
Information Criterion (AIC) was used to compare model per-
formance using different model parameters and covariates.
The Multivariate Adaptive Regression Splines (MARS) algo-
rithm, which fits piecewise logistic regression models, was
also run using P. pungens presence/pseudo-absence data.
Boosted Regression Trees (BRT) and Random Forests (RF),
two ensemble machine learning algorithms based on classifi-
cation and regression trees, were evaluated (Breiman 2001;
Elith et al. 2008). SAHM uses the ‘gbm’ function in R to
run the BRT model (Elith et al. 2008; Talbert and Talbert
2012), which starts with a single decision tree, and using a
deviance reduction criterion and stepwise cross-validation
procedure, evaluates the effect of incrementally added trees
on error (Elith et al. 2011). Lastly, the SAHM module running
Maximum Entropy software was used to develop a Maxent
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SDM that minimizes relative entropy between the probability
densities estimated for the species and that estimated for the
available environment (Phillips et al. 2006; Phillips and Dudik
2008; Elith et al. 2011).

Ten-fold cross-validation with a 70 % testing/training split
was used to evaluate model performance. Calibration plots
and statistics describing the goodness-of-fit between the pre-
dicted values and the observations of each of the five SDMs
were used to identify model over or under fitting (Pearce and
Ferrier 2000). Receiver operating characteristic curve (ROC)
plots were used to examine the relationship between model
sensitivity and specificity and to identify thresholds used to
discretize continuous predictions of P. pungens occurrence
into presence/absence rasters. Area under the curve (AUC)
scores >0.8 indicate good model fit (Swets 1988; Talbert and
Talbert 2012). We evaluated model confusion matrices de-
scribing model over and under prediction. Based on this in-
formation, we selected the RF SDM for use in subsequent
sample design steps. See the electronic supplement for addi-
tional details regarding SDM development.

Sampling Design

To maintain inference to our entire study area yet maximize
sampling efficiency, we implemented a multi-staged cluster
design to allocate sampling resources (Fig. 2). For both the
first stage (watersheds) and second stage (locations within
watersheds), we used the Reverse Randomized Quadrant-
Recursive Raster (RRQRR) algorithm in ArcGIS to generate
a spatially-balanced sample list. An equitable spatial distribu-
tion of samples across the sample frame can improve statisti-
cal efficiency by maximizing spatial independence among
sample locations (Theobald et al. 2007; Olsen et al. 2012).
HUBs intersecting the Northern Parks and Ranges
ecoregion section comprised our initial sampling frame. To
increase sampling efficiency, we eliminated HUBs with less
than 10 % of their area supporting predicted P. pungens habitat
on public lands. From this final sampling frame (n=247
HUBs), we used the RRQRR algorithm to develop an ordered
list of HUBs for sampling. To decrease the likelihood of
selecting HUBs that had no P. pungens populations, we used
an unequal probability surface in our first stage selection.
HUBs with known occurrence data (herbarium specimen lo-
cality records or vegetation plot data) were given a priority of
1, while those meeting the minimum threshold of predicted
habitat and public lands but lacking historical records were
given a priority of 0.3. The RRQRR algorithm produces a
continuous ordered list of samples, and if a selected feature
cannot be sampled because of inaccessibility or an absence of
target populations, the next feature on the list is selected. Pilot
sampling indicated that the final SDM over-predicted
P. pungens occurrences, so an oversample list was created to
allow for the replacement of HUBs lacking occurrences.

@ Springer

For the second stage of the sampling design, we used the
RRQRR algorithm in ArcGIS to create sample points within
selected HUBs (Fig. 2). Picea pungens is a common tree in
some habitats, but it is uncommon across the study area as a
whole. While the SDM reduced the need to search areas of
clearly unsuitable habitat (e.g., alpine tundra), the patchy local
distribution of P. pungens resulted in many instances where a
selected sample area supported no trees. The study area’s rugged
terrain and low road density imposed high travel costs both
between randomly selected points and for searching for
P pungens trees near selected points. In pilot sampling, we
found that a search radius of approximately 100 m effectively
balanced trade-offs between the time spent searching an area for
the presence of a tree and not finding it and the additional travel
cost imposed by abandoning a site as lacking P. pungens when it
was present but outside the defined search radius. For each stage
1 HUB, a RRQRR point list was created for the entire sample
frame, comprised of predicted habitat from the binary SDM,
public lands within 300 m of roads or trails, and areas with
slopes<25°. Because of the variability in watershed size, habitat
characteristics, road density, and land ownership across the
study area, the total number of points per HUB varied.

Field Sampling

Because of limited vehicle access within HUBs and natural ter-
rain breaks, we subdivided the final stage 2 points into clusters
with common road or trail access. Each cluster had a minimum
of 5 RRQRR points with trees occurring within 1 km of each
other. In every case, the lowest numbered point in each cluster
was visited first, and the point with the next lowest number
selected if P pungens was not found at the first sample point.
Each RRQRR point was the center of a 100 m radius search area
within which field crews searched for P pungens. Where multi-
ple trees occurred within the search area, a laser range finder and
GPS were used to identify the tree closest to the RRQRR point
coordinate, thereby providing an objective basis for choosing the
specific tree assessed. Within each stage 1 HUB, we sampled a
minimum of 5 and maximum of 25 trees, eliminating HUBs
where field reconnaissance indicated no P. pungens occurred or
too few were present to reach the minimum sample size.

In higher elevation HUBS, it was critical to distinguish
P. pungens from P. engelmannii where they co-occur. Several
morphological characteristics including cone length and width,
needle shape, and branching pattern were used to distinguish
these species (Mitton and Andalora 1981; Schaefer and
Hanover 1985; Weber and Wittmann 2012; Taylor 1993). It is
unclear whether P. pungens and P. engelmannii hybridize
(Mitton and Andalora 1981; Daubenmire 1972), so to avoid
ambiguity in our analyses, we only sampled trees that clearly
exhibited all P. pungens traits.

To determine the presence or absence of wetland hydrologic
regime, we documented primary hydrologic indicators such as
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Fig. 2 Flowchart illustrating the
main steps used in this study
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surface water, water table depth, and other indicators described
in the Regional Supplement to the Corps of Engineers Wetland
Delineation Manual: Western Mountains, Valleys, and Coast
Region (see Table 2 in the electronic supplement) (USACE
2010). At each site, we dug a 51-cm deep soil pit adjacent to
the sampled P. pungens tree and as close to the base of the tree
as possible, but offset as needed to avoid tree roots. Soils were
evaluated for hydric soil indicators found in the WMVC
Regional Supplement and the presence/absence of wetland hy-
drology and soil indicators recorded (USACE 2010).

Results
Species Distribution Modeling
The Random Forest (RF) and Boosted Regression Trees

(BRT) SDMs had the highest predictive accuracy on training
and cross validation data sets. The RF model had the highest
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mean area under curve (AUC) value, 0.83, for the cross vali-
dation folds. While all models performed reasonably well,
evaluation of confusion matrices and AUC curves indicated
that the RF model had the highest overall predictive accuracy
on the holdout data (Table 1). The threshold probability value
used for binary classification of the continuous RF prediction
surface was set as the point where model sensitivity equaled
model specificity (0.53). The RF model effectively captured
the valley bottom and lower slope positions characteristic of
P pungens main habitat types, and the model was most strong-
ly influenced by physiographic variables like TPI and eleva-
tion (Fig. 3). The most important variable in the model was
distance to streams, followed by elevation and the courser-
scale TPI layer (Fig. 3).

Field Sampling

Trees were sampled in 22 HUBs capturing the physiographic
and ecological variability of P. pungens habitat across broad
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Table 1  Summary of AUC values from cross-validation runs for
different SDMs developed in this study

Model n Mean Median IQR  Min Max  Training

BRT 10 0.82 0.82 003 078 086 095
GLM 10 0.73 0.74 005 064 078 074
MARS 10 0.77 0.80 006 070 083 08I
Maxent 10  0.80 0.79 004 072 085 084
RF 10 0.83 0.83 002 080 088 0.84

latitudinal and elevation gradients and a variety of landscape
positions (Fig. 4). Ofthe 423 P, pungens sampled, 70 (16.5 %)
were in sites with hydric soil and wetland hydrology indica-
tors and were considered wetlands. The remaining 353 trees
(83.5 %) were in sites lacking these indicators and were con-
sidered uplands. The percentage P. pungens in each HUB
occurring in wetlands was highly variable, ranging from 0 %
in six HUBSs, to 57 % in one HUB.

In general, HUBSs in the southern portion of the study area
had the lowest percentage of trees in wetlands. In these
HUBS, P. pungens trees were common in mid-slope topo-
graphic positions as well as valley bottoms, whereas in the
northern portion of our study area, trees were generally re-
stricted to valley bottoms and lower slope positions.
However, even in valley bottom and toe-slope positions, many

Fig. 3 Boxplots of variable A
importance measures (panel A)

for Random Forest cross-

sampled P. pungens were in locations that lacked wetland
indicators.

Picea pungens would be assigned a rating of FAC (its cur-
rent rating on the NWPL) in 5 HUBs, FACU in 11, and UPL
in 6 (Fig. 4). Pooling our data, only 16.5 % of P. pungens trees
were found in wetlands, which results in an indicator rating of
FACU. In general, the frequency of P. pungens sampled in
wetlands increased from south to north across our study area.
This latitudinal pattern is correlated with the proportion of
annual precipitation provided by summer monsoonal rains
across the study area (Fig. 5). Indicator ratings assigned at
the scale of individual HUBs showed a distinct trend with
watersheds classified as UPL concentrated in areas with a
greater proportion of annual precipitation occurring in July
and August.

Discussion

The current wetland indicator rating for P. pungens on the
NWPL in our study area is FAC (Lichvar 2013; USACE
2010), but our results suggest that an indicator rating of fac-
ultative upland (FACU) is more accurate. The high spatial
variation in the relative frequency that P. pungens occurs in
wetlands highlights an important conceptual difficulty in
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using frequency-based ratings: the habitat affinities of many
species varies geographically. This is recognized in the
NWPL, which provides separate lists and species indicator
ratings for each USACE region as well as some subregions.
However, the NWPL regions are large and heterogeneous.
The USACE WMVC region that includes our study area
spans the entire Rocky Mountains, Cascade and Sierra
Nevada ranges, and western coastal mountains and encom-
passes tremendous climatic and ecological variation.

In northern HUBs, P, pungens was largely limited to valley
bottom locations, where wetlands more commonly occur,
while in southern HUBS, trees occurred more frequently on
slopes far from streams and riparian zones. We hypothesize
that this may reflect differences in the strength and consisten-
cy of the summer monsoon precipitation pattern, which more
strongly influences the southern portion of our study area
(Kittel et al. 2002). Late summer rains may produce higher
summer soil water contents, allowing P. pungens to expand
out of the riparian zone and into mid-slope positions. The
importance of monsoon precipitation in the southern part of
the region has been demonstrated for such diverse phenomena
as variations in subalpine tree line and water table dynamics in
mountain fens (Anderson 2012; Fall 1997; Cooper 1990).

A primary goal of this study was to develop a generalizable
approach suitable for quantifying the wetland rating of any
plant species over a large geographic area. The USACE is
developing mechanisms for challenging indicator ratings and

indicator rating of sampled watersheds; dashed line represents mean
elevation of sampled trees across all watersheds (panel B)

our study provides a rigorous, statistically-based approach
suitable for undertaking such analyses. Approximately 40
challenges to NWPL plant species ratings have occurred since
2012 when the list was first revised under Corps administra-
tion. Resolution of these cases was based primarily on expert
opinion, but future challenges may benefit from a quantitative
analysis like the one presented in this study.

When sampling species with broad ranges, multi-stage
sampling designs can be useful, but the logistical challenges
presented by sampling large areas require careful planning to
allow for successful implementation. Efficient sampling must
address uncertainties in what is known about the distribution
of'a species. Developing SDMs as in this study represents one
possible approach, but if accurate habitat or range maps are
available, this step may not be necessary or desirable given the
complexity it adds.

The broad spatial extent of our sample frame allowed us to
make statistically-grounded statements about the frequency of
occurrence of P. pungens in wetlands over a large geographic
arca. However, we have no statistical inference to populations
in other parts of the WMVC region. Picea pungens is found
across a large area of the southern Rocky Mountains and the
adjacent southwest, and our results suggests that it likely oc-
cupies significantly different habitats in the northern and
southern portions of its range.

A critical challenge in sampling a species with a discontin-
uous distribution like P. pungens is efficiently locating plants
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for sampling. Considerable time was spent searching for
P pungens in areas where it was absent because our SDM
over-predicted its occurrence. Because absences play no part
in the calculation of frequencies, over-prediction introduced
no bias in our final estimates, but it did reduce sampling effi-
ciency. This is preferable to the use of an overly restrictive
SDM that could introduce bias if areas incorrectly omitted
from the sample frame disproportionately occur in either wet-
lands or uplands.

The results from any SDM are best viewed as hypotheses
to be iteratively tested and validated with new data (Jarnevich
et al. 2015). Although we are in a better position after field
sampling to produce a more accurate SDM for P. pungens, our
SDM served its intended purpose in contributing to a more
efficient sampling design. We attribute over-prediction in our
SDMs to several factors, including biases in the occurrence
data used to create the models. Many botanists collect speci-
mens of well-known taxa such as P. pungens only when the
identity of a plant is in question or the population is an unusual
occurrence, representing a possible source of geographic bias
that can complicate model interpretation (Aiello-Lammens
et al. 2015; Hijmans 2012; Graham et al. 2004).
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Our decision to limit the sampling frame to areas proximate
to roads may be a source of geographic bias, although we see
no a priori reason why this should be so. Most roads in our
study region were originally developed from old trails or wag-
on roads and occur in relatively low landscape positions,
paralleling valley bottoms. Although untested in our analysis,
we believe that if any biases were introduced by our
constraining the sample frame, it would be towards areas more
likely to support wetlands than not.

The main motivation for incorporating species distribution
modeling into our sampling design was to eliminate the con-
siderable portion of our study area that lacks P. pungens hab-
itat. Large elevation gradients drive patterns of ecosystem zo-
nation in the southern Rockies (Daubenmire 1943) and sam-
pling approaches that fail to recognize this will be highly
inefficient, limiting their effectiveness at large scales. While
the RF model chosen from our model selection process over
predicted the extent of P. pungens habitat, it achieved its pur-
pose of narrowing our sample frame enabling us to sample at
landscape scales.

To our knowledge, this is the first study to characterize a
species’ wetland indicator rating at such a broad scale.
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However, the regions used to assign ratings on the NWPL are
significantly larger in extent and more heterogeneous in char-
acter. This study cannot provide statistical inference to unex-
amined portions of P. pungens range, but our results do sug-
gest that ratings at such broad spatial scales would be difficult
to test. As our study demonstrates, wetland indicator values
can vary at geographic scales much smaller than those now
used to assign NWPL ratings.

Conclusions

We present an objective method for quantifying the wetland
indicator rating of a plant species. Our general approach could
be useful for developing new ratings for critical plant species
or for use in future updates to existing NWPL ratings. All
NWPL wetland ratings were originally assigned by best pro-
fessional judgment, and while empirical data cannot realisti-
cally be collected for all species on the NWPL, we demon-
strate that it is feasible to quantitatively assign ratings for
individual species even at broad landscape scales.
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